
Delphi Internals: How Not To
Write An Operating System (2)
Drive serial numbers and CD-ROM detection
by Dave Jewell

Last month, as you will no
doubt remember, I presented

a number of low-level routines
which reported the number and
type of the floppy disk drives at-
tached to your PC and enabled
you to read and write volume la-
bels from within a Delphi applica-
tion. Well, they say that a week is
a long time in politics and the
same is certainly true of a month
in computer journalism! Not be-
ing one to tolerate slackers, the
editor spotted the fact that I’d bot-
tled out of the serial number issue
and sent me some public-domain
code which reads and writes se-
rial numbers to DOS volumes. OK,
I can take a hint...

Serial Number Handling
Microsoft implemented serial num-
bers in DOS 4.0 onwards partly as
an aid to those who wanted to pro-
tect commercial software against
illicit copying. The idea is that the
DOS FORMAT command marks each
DOS volume with a 32-bit serial
number when the volume is cre-
ated. Microsoft have never pub-
lished the details of how the 32-bit
serial number is generated, but I
believe that the current date and
time has some bearing.

The routines described here will
allow you to change the serial num-
ber of any DOS volume, including a
hard disk. I would advise you to
exercise some caution here since if
you have installed a piece of soft-
ware that checks serial numbers
(and some anti-piracy techniques
work just this way), it won’t take
kindly to finding a different number
to what it saw last time round. It
will assume that it’s been moved to
a different hard disk and refuse to
play ball. You have been warned...
As I said last month, the ultimate
aim of this mini-series on low-level

DOS hackery is to come up with a
Delphi program that allows you to
format and copy DOS floppies. As
far as serial number twiddling is
concerned, I’d leave the hard disk
serial number alone if I were you.

Like the volume label informa-
tion, a disk’s serial number is part
of the MIDINFO data structure that I
described last month. Unfortu-
nately, because of the way that
DOS and Windows inter-relate, it
isn’t possible to simply issue a DOS
call to retrieve the required serial
number information.

As I explained, Windows inter-
cepts any DOS call and tries to
handle the call itself. This is done
as a performance optimisation and
saves having to switch the proces-
sor down to real mode before
calling Ye Olde Real-Mode DOS
Kernel. Now the problem here is
that, under Windows 3.1, there are
a fair number of calls that Windows
doesn’t know how to handle: it just
passes them directly down to real-
mode DOS. As luck would have it,
the DOS handler in Windows
doesn’t understand any of the
calls that relate to volume serial
numbers.

Just to make matters worse, all
the calls relating to volume serial
numbers rely on passing the
address of a MIDINFO data structure
to DOS. This address is passed in
the DS:DX registers. Now, since the
DOS handling code in Windows
doesn’t understand these DOS
calls, it can’t possibly know the
significance of the DS and DX
registers, it simply passed them
unchanged to the real-mode kernel
code. The upshot of this is that the
real-mode kernel gets handed a
protected mode address which it
can’t make use of. It’s not surpris-
ing, therefore, that the DOS calls in
question don’t work.

DPMI To The Rescue...
Fortunately, the DPMI extender
built into Windows provides a
solution. If you’re not familiar with
DPMI (DOS Protected Mode Inter-
face), suffice it to say that it’s a set
of low-level operating system serv-
ices that are designed to prevent
DOS extenders from treading on
one another’s toes.

You might think that Windows
itself is responsible for organising
the memory in your PC, but you’d
be wrong – the overall responsibil-
ity belongs to whatever DOS exten-
der is loaded. Normally, this is the
DOS extender that’s loaded as part
of the Windows initialisation, it’s
responsible for handing out mem-
ory to Windows and to any DOS
sessions that are started up. It also
allocates memory to protected
mode DOS extenders which may
start running within a DOS session.

Besides memory management,
the DOS extender also contains
routines which enable protected
mode programs to call real-mode
interrupts. Aha! This is just what
we want to hear. By getting our
Windows app to call the real-mode
DOS $21 interrupt directly, we can
bypass the brain-dead DOS code
in Windows and communicate
directly with the DOS kernel.

This leaves just one problem. We
need to ensure that the MIDINFO
data structure is allocated in a
place where it can be accessed
both by a protected mode applica-
tion and also by the real-mode DOS
kernel. As you may remember from
last time, even the mere act of us-
ing the Pascal INTR routine can
cause a GPF here by virtue of an
invalid value being loaded into the
processor’s registers.

Once again, there’s a way around
this problem. Windows provides a
special routine, GlobalDOSAlloc,

36 The Delphi Magazine Issue 7

which guarantees to allocate mem-
ory in the first Mb of RAM. Such
memory is available both to real
and protected-mode programs. For
this reason, it’s a very scarce and
precious system resource. You
must be careful to allocate only the
smallest necessary amount of
memory using this technique and
to de-allocate it again as soon as
possible.

Putting all this together, I came
up with the SERNUM unit which
appears in Listing 1. As a starting
point, I based this unit on code
from a public-domain application
note published by Borland (num-
ber 2534) but the code is now about
half the size it was originally, is
much more structured and has a
far simpler and cleaner interface.

For example, ‘clients’ of this unit do
not need to know about the MIDINFO
data structure, the use of DPMI or
the vagaries of GlobalDOSAlloc!

All the serial number twiddling
code is shown here as a separate
unit for the sake of convenience
and for conciseness since I didn’t
want to replicate any of the code
from last month. However, to make
life easier for you and me, I also
added the code to the DOSINFO
unit which we began last month –
the new version is on this month’s
disk of course.

How It Works
The SERNUM unit exports just two
routines: GetSerialNumber and
SetSerialNumber. The code in the
GetSerialNumber routine simply
calls the lower-level GetMid routine
to fetch the MIDINFO data structure

for the specified drive. The volume
serial number is then extracted
from this and returned as the func-
tion result. The SetSerialNumber
routine is equally straightforward:
it calls GetMid to retrieve the cur-
rent MIDINFO record, modifies just
the serial number field and then
writes the record back to disk
through a call to SetMid.

At the next level of implementa-
tion, the GetMid and SetMid routines
both call GlobalDOSAlloc to allocate
space for a MIDINFO data structure
in the first Mb of RAM. This is for
the reasons given earlier. The func-
tion result from GlobalDOSAlloc is a
32-bit value which contains a
protected mode selector in the
low-order word and a real mode
segment address in the high-order
word. It is absolutely crucial that
the protected mode Windows

unit SerNum;
Interface
uses WinProcs, WinTypes;
function GetSerialNumber(drive: Byte): LongInt;
function SetSerialNumber(drive: Byte; serNum: LongInt):
 Bool;

Implementation
type
 PMIDINFO = ^MIDINFO;
 MIDINFO = record
 InfoLevel: Word;
 SerialNum: Longint;
 VolLabel: array[0..10] of Char;
 FileSystem: array [0..7] of Char;
 end;
var
 R: record { Real mode call structure }
 di, si, bp, Reserved, bx, dx, cx, ax : Longint;
 Flags, es, ds, fs, gs, ip, sp, ss: Word;
 end;

function GetSetMid(Drive: Byte; MID: PMIDINFO;
 RealModeAX: Word): Bool;
{ Low level code to get or set a MIDINFO data structure
 for the specified drive; RealModeAX = $6900 for a get
 and $6901 for a set operation }
var Error: Byte;
begin
 Error := 0; { Assume everything ok }
 GetSetMid := True;
 R.ax := RealModeAX;
 R.bx := Drive;
 R.ds := HiWord(Longint(MID)); { Subtle !!! }
 R.dx := LoWord(Longint(MID));
 asm
 mov bx, 0021h { set flags to $00, Real mode interrupt $21 }
 xor cx, cx { copy 0 words from protected mode stack }
 mov ax, seg R
 mov es, ax { selector of real mode call structure }
 mov di, offset R { offset of real mode call structure }
 mov ax, 0300h { DPMI simulate real mode interrupt }
 int 31h { do the business }
 jnc @@1 { branch if no error }
 inc Error
 @@1:
 end;
 if Error = 1 then GetSetMid := False;
end;

function GetMid(drive: Byte; var mid: MIDINFO): Bool;
{ Get the MIDINFO record for a specified drive, uses
 GetSetMid, returns TRUE if successful }

var p: LongInt;
begin
 GetMid := False; { Assume failure }
 { Allocate a MIDINFO data structure in DOS address-space }
 p := GlobalDOSAlloc(sizeof(MIDINFO));
 if GetSetMid(drive, Ptr(HiWord(p), 0), $6900) then
 begin
 mid := PMIDINFO(Ptr(LoWord(p), 0))^;
 GetMid := True;
 end;
 GlobalDOSFree(LoWord(p));
end;

function SetMid(drive: Byte; var mid: MIDINFO): Bool;
{ Set the MIDINFO record for a specified drive, uses
 GetSetMid, returns TRUE if successful }
var p: LongInt;
begin
 SetMid := False; { Assume failure }
 { Allocate a MIDINFO data structure in DOS address-space }
 p := GlobalDOSAlloc(sizeof(MIDINFO));
 PMIDINFO(Ptr(LoWord(p), 0))^ := mid;
 if GetSetMid(drive, Ptr(HiWord(p), 0), $6901) then
 SetMid := True;
 GlobalDOSFree(LoWord(p));
end;

function GetSerialNumber(drive: Byte): LongInt;
{ Get the serial number for a specified drive, if an
 error occurs, then 0 is returned as the serial number }
var mid: MIDINFO;
begin
 if GetMid(drive, mid) then
 GetSerialNumber := mid.SerialNum
 else
 GetSerialNumber := 0;
end;

function SetSerialNumber(drive: Byte; serNum: LongInt):
 Bool;
{ Set the serial number for a specified drive, if no
 error, TRUE is returned as the function result }
var mid: MIDINFO;
begin
 SetSerialNumber := False;
 if GetMid(drive, mid) then begin
 mid.SerialNum := serNum;
 SetSerialNumber := SetMid(drive, mid);
 end;
end;
end.

➤ Listing 1

March 1996 The Delphi Magazine 37

program only accesses the MIDINFO
data structure using the selector. If
the real mode segment gets inad-
vertently loaded into a segment
register, you’ll get an immediate
GPF error. It is remarkably easy to
do this unintentionally, as we’ll see
in just a moment.

Having allocated memory in
DOS’s address space, The GetMid
routine calls GetSetMid, passing it a
real-mode pointer to the MIDINFO
buffer and specifying a DOS func-
tion code of $6900. This tells DOS to
read the serial number information
from the disk. Similarly, the SetMid
routine allocates a MIDINFO struc-
ture, copies the passed data into it
(so that it can be accessed by DOS)
and calls GetSetMid with a DOS
function code of $6901 indicating a
write operation.

The real low-level magic, of
course, takes place in the GetSetMid
function. In the original Borland
technical note, this job was done
by two routines which differed
only by one line. I made things a lot
simpler by just passing the
required DOS function code as the
RealModeAX parameter.

The first job is to initialise the
various fields of the R variable ac-
cording to the register values that
we want the real-mode DOS kernel
to see. As far as the $6900/$6901
routines are concerned, only the
AX, BX and DS:DX registers are
relevant here.

Now, here’s a little subtlety for
you: look closely at the two assign-
ment statements where the R.ds
and R.dx fields are initialised. If
you’ve much familiarity with
Borland’s Pascal dialect, you’ll im-
mediately spot the fact that these
statements don’t look very effi-
cient. It would be more efficient
to use the built-in Ofs and Seg
operators like this:

R.ds := Seg(MID^);
R.dx := Ofs(MID^);

The trouble with is that these state-
ments will immediately produce –
yes, you’ve guessed – another GPF.
Although it might seem counter-
intuitive, the mere use of the Seg
and Ofs operators will load the ES
segment register with the specified

pointer. Since it’s a real-mode
rather than a protected-mode
pointer, the CPU presses the Panic
Button as soon as the ES register is
loaded.

For all you low-level assembler
programmers, here’s what the R.ds
assignment looks like using HiWord
and LongInt:

push word ptr [MID+2]
push word ptr [MID]
pop dx
pop ax
mov [R.ds],ax

Not earth-shatteringly efficient,
but at least a segment register isn’t
involved. Now here’s the same
thing again with the Seg operator
being used:

les di, [MID] ; Oops, that’s torn it...
; We never get here:
; we’ve already GPFd...
mov ax,es
mov [R.ds],ax

This code is a lot more efficient, but
completely vulnerable to invalid
addresses. I mentioned this bug to
Borland many moons ago, back in
the days of Borland Pascal 7, but
unfortunately it never got fixed. In
my opinion, the Seg and Ofs opera-
tors should never involve a seg-
ment register. This little example
shows the dangers of passing
invalid addresses around inside
your program, even when you
aren’t expecting to reference them
from protected mode.

Once the R variable is initialised,
it’s relatively plain sailing. All that
remains is to make the DPMI call
through INT $31. We specify the

required interrupt number in the
BL register and how many words to
copy from the protected mode
stack in CX. This facility enables you
to issue real-mode interrupt calls
which expect one or more parame-
ters on the stack. This isn’t the case
here so we initialise this value to
zero. Finally, the ES:DI registers
point to the R data structure and we
descend into the bowels of the
DPMI server itself... On exit from
the DPMI server, the carry flag
indicates success or failure and
this is used to set the function
result as appropriate.

The End Of The Road
So there you have it: a couple of
simple little routines which will
allow you to get and set the serial
number of any drive. If you’re still
with me so far, the good news is
that, like the volume label calls I
described last month, all the code
here will work under Windows 3.1,
Windows 95 and Windows NT.

However, it should be stressed
that you should only resort to such
hackery if you’re writing a 16-bit
application that you want to
execute under all three of these
platforms.

If you’re writing an all-new 32-bit
program for Windows 95 and/or
NT, then for goodness sake use the
new 32-bit API routines provided
for the purpose. You can use
GetVolumeInformation to obtain the
volume label and serial number
information for a volume, and you
can use the SetVolumeLabel call to
change the label of a volume. What
about setting the serial number
from a 32-bit application, I hear you
cry? Well, there seems to be no API

➤ Here’s last month’s testbed program modified to display serial
numbers. It would be dead easy to get it to also change serial
numbers, but you’ll have to take responsibility for this yourself!

38 The Delphi Magazine Issue 7

call to do this. I suspect that
Microsoft don’t want you to do it.

Incidentally, while on the subject
of volume labels, you might be
tempted to suppose that now
we’ve got working GetMid and
SetMid routines, we could just use
those to obtain and set the volume
serial number. Alas, this isn’t the
case. These routines operate on
the MIDINFO data structure which is
located on the boot record, the
first logical sector of an MSDOS
volume. While there is a volume
label stored here, it’s only the one
that was specified when the vol-
ume was first formatted. If you sub-
sequently use the DOS LABEL
command, the appropriate direc-
tory entry will be updated but not
the boot record information. Con-
sequently, for volume labels we
need to stick with the FCB-related
nonsense that I showed you last
month, while for serial numbers,
we use the MIDINFO mechanism.
Simple, eh? Like I said, it’s an excel-
lent example of how not to design
an operating system...

Finally, Figure 1 shows our little
testbed program running. I took
the existing testbed program (see
last month) added some code to
display volume serial numbers and
reorganised it around the TabSet
control so as to simplify the
window layout. Rather than listing
the entire program again (most of
which is the same) Listing 2 shows
the only really important bit: the
OnChange handler for the drive list
control which appears on the
Serial Numbers page of the note-
book. Imaginative use of the Format
routine allows us to display the
selected volume’s serial number in
the same hi-lo format that’s used
on the DOS command line.

CD-ROM Detection
Just to round off with, I’ve added a
couple of CD-ROM related routines
to the DOSINFO unit. They are both
shown in Listing 3. The first of
these, GetCDDriveLetter, calls the
Microsoft MSCDEX DOS extensions to
determine if a CD-ROM drive is
installed. If it is, then the drive let-
ter of the CD is returned as the
function result. A zero character
(#0) is returned if no CD-ROM drive

can be found. The routine contains
a built-in check to see if MSCDEX itself
is installed, so it can be called
under any circumstances.

The other routine, called
RunningFromCD, will tell you whether
or not the current application is
running from the CD-ROM drive.
This can be useful if, for example,
you’re writing an installation pro-
gram and you want to take special
action if the program is being
executed from a CD. Note that this
routine will always ‘fail safe’. In
other words, if no CD-ROM drive is
present then the GetCDDriveLetter
routine will always return a zero
character. Since this can’t possibly
correspond to a valid drive letter,
the routine will always return False
in these circumstances.

Next Month
That’s all for now. Next month,
we’ll be delving into the mysteries
of floppy disk formatting.

function GetCDDriveLetter: Char; assembler;
{ Return the drive letter of the CD-ROM drive (if any);
 if no CD is present, #0 is returned }
asm
 mov ax,$150B { do installation check for MSCDEX }
 mov bx,$ffff { preset the BX register }
 int $2F { see if MSCDEX is installed }
 inc bx { was BX register still -1? }
 jz @@1 { if so, there ain’t no CD-ROM ! }
 xor bx,bx { clear BX register }
 mov ax,$1500 { request starting drive letter }
 int $2F { result in CX register }
 add cl,$41 { normalise into character 0->$41 }
 mov bx,cx { result in BX register }
@1: mov ax,bx { result in AX }
 mov ah,0 { clear the high byte }
end;

function RunningFromCD: Bool;
{ Purpose: True if this application is running from CD }
var
 fName: array [0..255] of Char;
begin
 GetModuleFileName(hInstance, fName, sizeof(fName));
 RunningFromCD := (fName [0] = GetCDDriveLetter);
end;

➤ Listing 3

procedure TForm1.DriveList2Change(Sender: TObject);
var
 s: String;
 snum: LongInt;
begin
 s := Copy(DriveList2.Items [DriveList2.ItemIndex], 7, 1);
 snum := GetSerialNumber(Ord(s[1]) - $40);
 TheSerialNum.Caption := Format(’%.4x-%.4x’, [HiWord(snum), LoWord(snum)]);
end;

➤ Listing 2

This month’s disk contains the
source code for the SERNUM.PAS
routines (in case you want to keep
the serial number stuff separate)
together with updated source code
for DOSINFO.PAS, which contains
all the code we’ve discussed so far
in these last two months.

Dave Jewell is a strange person
who enjoys delving around inside
the guts of Delphi, Windows and
DOS. He works as a freelance
consultant, technical journalist
and author. His ambition is to get
through life without ever writing
a database program. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk or
on CompuServe as 102354,1572

March 1996 The Delphi Magazine 39

	Serial Number Handling
	DPMI To the Rescue..
	How it Works
	The End of the Road
	CD-ROM Detection
	Next Month

